Yet another Freiheitssatz: Mating finite groups with locally indicable ones
نویسندگان
چکیده
Abstract The main result includes as special cases on the one hand, Gerstenhaber–Rothaus theorem (1962) and its generalisation due to Nitsche Thom (2022) and, other Brodskii–Howie–Short (1980–1984) generalising Magnus’s Freiheitssatz (1930).
منابع مشابه
Amenable Groups with a Locally Invariant Order Are Locally Indicable
We show that every amenable group with a locally invariant partial order has a left-invariant total order (and is therefore locally indicable). We also show that if a group G admits a left-invariant total order, and H is a locally nilpotent subgroup of G, then a left-invariant total order on G can be chosen so that its restriction to H is both left-invariant and right-invariant. Both results fo...
متن کاملCentralizers in Locally Finite Groups
The topic of the present paper is the following question. Let G be a locally finite group admitting an automorphism φ of finite order such that the centralizer CG(φ) satisfies certain finiteness conditions. What impact does this have on the structure of the group G? Equivalently, one can ask the same question when φ is an element of G. Sometimes the impact is quite strong and the paper is a sur...
متن کاملRepresentations of Locally Finite Groups
The purpose of this paper is to give a brief general account of the completely reducible finite-dimensional representations of a locally finite group G over a given algebraically closed field K. Theorem 1 shows that all such representations of G can be brought down to the algebraic closure F in K of the prime field of K. This reduces all further considerations in this account to countable group...
متن کاملcentralizers in simple locally finite groups
this is a survey article on centralizers of finite subgroups in locally finite, simple groups or lfs-groups as we will call them. we mention some of the open problems about centralizers of subgroups in lfs-groups and applications of the known information about the centralizers of subgroups to the structure of the locally finite group. we also prove the following: let $g$ be...
متن کاملInfinite Coxeter Groups Are Virtually Indicable
An infinite group G is called indicable (resp. virtually indicable) if G (resp. a subgroup of finite index in G) admits a homomorphism onto Z. This is a powerful property for a group to have; for example in the context of infinite fundamental groups of aspherical 3-manifolds it remains one of the outstanding open questions to prove such groups are virtually indicable. To continue on the 3-manif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Glasgow Mathematical Journal
سال: 2022
ISSN: ['0017-0895', '1469-509X']
DOI: https://doi.org/10.1017/s0017089522000349